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Abstract—In the midst of an accelerating digital 
transformation, the adoption of artificial intelligence (AI) 
in medicine and healthcare has shown significant progress 

in recent years, particularly in enhancing diagnostic 
accuracy and efficiency. A key challenge in diagnostics is 
the difficulty medical personnel sometimes face in 
thoroughly understanding and analyzing a disease. Manual 

analysis by medical staff can be susceptible to subjectivity, 
fatigue, and human error. This research aims to develop a 
straightforward deep learning-based model for bone 

fracture detection using a convolutional neural network 
(CNN) architecture, designed to automate the diagnostic 
process with high accuracy. The model was trained on an 

X-ray image dataset compiled from various sources and 
evaluated using metrics such as accuracy, sensitivity, and 
specificity to comprehensively assess its performance. 
Integrating AI into radiological analysis not only improves 

the efficiency of the diagnostic process but also accelerates 
the application of bioinformatics technology in global 
medical practice. This study is expected to make a tangible 

contribution to the evolution of modern healthcare systems, 
reduce the workload of medical professionals, and enhance 
public confidence in technology-based diagnostic 

outcomes. 
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I. INTRODUCTION  

Over the past few decades, the development of artificial 
intelligence (AI) has permeated various scientific disciplines, 
including bioinformatics and medical science. 
Bioinformatics, once primarily focused on genomic and 
proteomic data analysis, has now become a central pillar in 
the transformation of digital health systems, with AI as a key 
driving force [1]. This trend is bolstered by substantial 
investments from technologically advanced nations like the 
United States, China, the European Union, and Japan, which 

have allocated billions of dollars to AI development to 
improve healthcare system efficiency [2]. 

Deep learning is one AI infrastructure and framework 
experiencing exponential growth. Its application in radiology 
aims to automate detection processes, including the 
identification of bone fractures through X-ray analysis. 
Accurate and rapid bone fracture detection is a critical aspect 
of medical diagnosis. However, conventional methods 
relying on medical personnel often encounter obstacles such 
as time constraints, subjectivity, and fatigue, which can lead 
to diagnostic errors [3]. Conversely, AI based on deep 
learning has demonstrated performance that can rival, and in 
some recent studies, even surpass human diagnostic 
capabilities [4]. Architectures like the convolutional neural 
network (CNN) have proven effective in recognizing 
complex patterns in medical images, enabling automated 
fracture detection with greater precision than traditional 

approaches [5]. 

In the broader technological and economic landscape, 
significant investments in AI are not only aimed at enhancing 
healthcare quality but also at creating systems more 
responsive to large-scale medical challenges, including the 
optimization of data-driven diagnostics. Technology firms 
such as Google DeepMind and IBM Watson Health have 
developed AI models for medical science analysis [6], while 
research institutions in developed countries continue to 
innovate by refining algorithms for implementation in 

modern healthcare systems [7]. 

This research seeks to develop a simple deep learning-based 
AI model capable of providing more optimal results for 
automated bone fracture diagnosis using X-rays. The goal is 
to reduce the workload of medical personnel, improve 
diagnostic accuracy, and expedite medical decision-making. 
The developed model will be assessed using various 
performance metrics, including accuracy, sensitivity, and 
specificity, to gauge its effectiveness in a clinical setting. By 
employing AI as an assistive tool in radiology, this research 
is anticipated to contribute to the technological revolution in 

mailto:rangku2000@binus.ac.id
mailto:naufal.hidayat001@binus.ac.id
mailto:albany.siswanto@binus.ac.id
mailto:djuhar.manik@binus.ac.id


global healthcare systems, while also strengthening the 
integration of bioinformatics in big data-driven medical 

practice [8]. 

 

II. METHODOLOGY 

This study employs a deep learning approach centered on 
object detection to identify bone fractures in X-ray images. 
The methodology is structured into several key stages: data 
collection and annotation using roboflow [9], data 
preprocessing, model development and training, and finally, 
model performance evaluation. 

A. Data Collection and Annotation 

X-ray image datasets were obtained from two main sources, 
namely the Kaggle and Roboflow platforms [10]. The Kaggle 
dataset is used as the main database containing various types 
of bone radiology images, while Roboflow is used for the 
annotation process and manual bounding box creation of 
fracture parts identified in the image. The annotation process 
is carried out consistently to ensure accurate ground truth 

quality in the training stage [11]. 

B. Data Preprocessing 

Before being fed into the training models, the collected X-ray 

images underwent several preprocessing steps: 

1) Resizing: All images were uniformly resized to meet the 
input dimension requirements of each model architecture 
(e.g., 416 x 416 pixels for YOLO). 

2) Normalization: Image pixel values were normalized to a 
[0,1] range. This step helps in accelerating convergence 
during the model training process [12]. 

3) Augmentation: Data augmentation techniques, including 
rotation, flipping, and adaptive contrast adjustments, were 
applied [13]. These methods serve to increase the diversity of 
the training data and help in preventing model overfitting 
[14]. 

C. Deep Learning Model Development 

This research implemented and compared two deep learning 
architectures: 
 
1) YOLOv11 Nano: As the latest and fastest iteration in the 
Ultralytics YOLO series of real-time object detectors, 
YOLOv11 redefines possibilities with its state-of-the-art 
accuracy, speed, and efficiency. Building on the significant 
advancements of its predecessors, YOLOv11 introduces 
notable improvements in architecture and training 
methodologies, positioning it as a versatile option for a wide 
array of computer vision tasks [15]. 

2) YOLOv12 Nano: YOLOv12 features an attention-based 
architecture, a departure from the traditional CNN-based 
approaches of earlier YOLO models. Despite this change, it 
maintains the real-time inference speed critical for many 
applications. This model achieves leading object detection 

accuracy through innovative methodological advancements 
in attention mechanisms and overall network design, all while 

sustaining real-time performance [16]. 

Each model was implemented using established deep 
learning frameworks like PyTorch and TensorFlow, with 
hyperparameter configurations fine-tuned based on initial 

experimentation. 

D. Model Training and Evaluation 

All models were trained using a dataset partitioned into 
training (80%) and validation/testing (20%) subsets [17]. The 
evaluation of model performance was conducted using 
several key metrics: 

1) Sensitivity (Recall): This metric measures the model's 
proficiency in correctly identifying actual fractures. 
 
2) Precision: This measures the proportion of correctly 
predicted fractures relative to all instances predicted as 
fractures [18]. 

3)   Mean Average Precision (mAP): Specifically employed 
for object detection models like YOLO, mAP assesses the 
accuracy of the detected bounding boxes. 

 

III. RESULT & DISCUSSION 

Upon completion of the training phase for all models, their 
evaluation results were compared to pinpoint the most 
effective model for detecting fractures in X-ray images. The 
analysis focused on the inherent strengths and limitations of 
each architecture, alongside their potential applicability in 
clinical decision support systems. 

A. YOLOv8 Large, YOLOv11 Nano, and YOLOv12 Nano 

In this study, our configuration primarily centered on 
YOLOv11 due to several compelling reasons: its processing 
speed, a more lightweight model size, and its efficiency in 
adapting to our available computational resources. The 
training results from YOLOv11 indicated generally strong 
performance, especially for classes with a larger volume of 
data (such as Comminuted Fracture, Hairline Fracture, and 
Avulsion Fracture) [19]. However, certain classes, including 
GreenStick Fracture, Fracture Dislocation, and spiral 
fracture, still showed somewhat lower values for precision, 
recall, or mAP. 
 

 
Fig. 3.1 Finetuned YOLOv11 Nano 



YOLOv11 Nano stands out as a lighter and more stable 
version when compared to YOLOv12 Nano. It is engineered 
for high efficiency, making it particularly suitable for 
deployment in scenarios like edge computing or real-time 
applications where computational resources are constrained 
[20]. Consequently, we opted for YOLOv11 Nano to achieve 
superior inference speed and a more compact model size 
relative to YOLOv12 Nano, while still yielding a robust 
detection model that avoids significant overfitting or 
underfitting [21]. In terms of accuracy, the YOLOv11 Nano 
model we utilized demonstrated commendable detection 
capabilities, particularly for data-rich classes like 
Comminuted Fracture and Hairline Fracture. As indicated in 
the metrics (derived from the original Picture 3.1), YOLOv11 
Nano achieved an mAP@0.5 of 0.7809, a Precision of 
0.8205, and a Recall of 0.7337. Furthermore, YOLOv11 
exhibits an advantage in managing data imbalance [22]. This 
is evident in its capacity to recognize less common classes, 
such as Oblique fracture and Intra-articular fracture, even 
with very limited data samples. Had we employed YOLOv12 
Nano without specific adjustments for data distribution or 
tailored augmentation strategies, the model would likely have 
struggled with these minor classes, as its default performance 
is not as adept as YOLOv11 Nano when dealing with 
complex and imbalanced medical datasets [23]. 

 

Fig. 3.2 Finetuned YOLOv12 Nano 

When we experimented with YOLOv12, an objective look at 
the metrics revealed a slight dip in performance for 
YOLOv12 Nano. YOLOv12, being the newest addition to the 
YOLO family, incorporates several enhancements in its 
architecture and training algorithms [24]. These include 
optimizations in the backbone and head structures, alongside 
features like dynamic label assignment and cross-layer 
feature aggregation. While these are advancements, they also 
contribute to a model that is considerably more resource-
intensive than YOLOv11 Nano. With our specific training 
dataset, achieving performance superior to YOLOv11 Nano 
would necessitate careful attention to data distribution, 
specialized augmentation techniques, and access to more 

powerful computational resources. 

B. Bounding Box YOLOv11 Nano 

 

Fig. 3.3 Bounding Box 

The visual output from the YOLOv11n object detection 
model, after training, shows how well it can detect objects in 
various input images. Each colored bounding box indicates a 
successful recognition of an object by the model. The 
recognized objects include different types of bone fractures, 
such as "Comminuted Fracture," "Compression-Crush 
Fracture," and "Avulsion Fracture." It also identifies other, 
unrelated items labeled as "Null." The model can detect 
several types of bone fractures with fairly high confidence 
scores, usually between 0.7 and 0.8. This indicates that the 
model has learned to identify visual features that indicate 
fractures in X-ray images. However, many detections 
happened on images that were not X-rays. These included 
objects like cars, cartoons, logos, and people. The model 
labeled all these non-target objects as "Null" with high 
confidence scores, often between 0.9 and 1.0. This suggests 
that while processing a varied set of input data, the model was 
also effectively identifying and categorizing these non-target 
objects, separating them from the fracture classes it was 
trained to recognize.  

Overall, the model demonstrated skill in telling apart images 
of fractured bones from images containing other objects. To 
improve its accuracy and general ability, more work on 
curating the dataset is needed. Specifically, increasing the 
sample size for each type of fracture would help reduce 
misclassifications of non-bone images and might enhance the 
model's focus on relevant medical imagery. 

A. Metrics Evaluation 
 

 

Fig. An analysis of the training performance graphs for the 
bone fracture object detection model shows several key 
trends in the loss metrics. The Box Loss metric dropped 

notably from about 1.5 to 1.2. This indicates an 
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improvement in the model's precision in predicting 
bounding box locations. Likewise, the Classification Loss 

(Cls Loss) steadily declined from 1.3 to 0.7. This means the 
model improved its ability to correctly classify bone 

fractures. The DFL Loss, however, only decreased slightly 
from 1.5 to 1.25. This suggests that this aspect could benefit 

from more optimization [25].  

Looking at the evaluation metrics, Precision reached a final 
value of around 0.85. This means that 85% of the model's 
detections were accurate, with a relatively low number of 
false positives. Recall, although its graph was partially cut off 
in the provided visuals, showed an upward trend. This 
indicates an improving ability to identify true positive cases. 
An mAP50 score of about 0.7 suggests a good level of 
performance for basic detection tasks where an Intersection 
over Union (IoU) of 0.5 is considered a correct detection.  

However, the lower mAP50-95 score, which ranged from 0.2 
to 0.35, indicates that the model's consistency drops under 
stricter IoU thresholds (averaging mAP scores from 0.5 to 
0.95 IoU). This decline in performance at higher IoU values 
likely stems from the natural variability in the shape and 
complexity of bone fractures. This variability makes it more 
challenging to achieve highly precise bounding box 
predictions. 

B. Recall Confidence Curve YOLOv11 Nano 

 

Fig 3.4 Recall Confidence Curve 

The Recall-Confidence Curve for the bone fracture detection 
model shows areas that need improvement. Recall values are 
generally low, ranging from 0.0 to 0.4 across different 
confidence thresholds. For example, a recall of 0.4 at a 
confidence threshold of 0.2 indicates that only 40% of actual 
fractures were correctly identified at that confidence level. 
This highlights a significant issue with false negatives, 
meaning many fracture cases could be missed by the model 
if a moderately low confidence threshold is used [26]. 

The detailed breakdown of different fracture types, such as 
Avulsion, Comminuted, and Hairline, shown in the curve 
emphasizes the need for a more detailed performance 
evaluation for each specific category. This is particularly 
important for fractures that are subtle or complex, as they are 
likely to show lower recall rates. In turn, this means the model 
frequently misses these cases. 

To improve the model's recall performance, several strategies 
can be applied. First, optimizing the confidence threshold is 
essential to find a better balance between recall and precision, 
though this curve focuses mainly on recall. Expanding the 
dataset, especially by increasing the number of samples for 
fracture classes that are often under-detected, is also 
important. Additionally, using targeted data augmentation 
techniques could help improve the detection of minor or less 
distinct fracture cases [27]. 

Clinical validation, with input from medical experts, is 
crucial. This step ensures that the ground truth annotations 
used for training and testing are accurate, especially for small 
or intricate fractures that often challenge automated detection 
systems. Overall, the Recall-Confidence Curve shows that 
the model currently has low sensitivity for certain fracture 
types at various confidence levels. This requires further 
refinements to the data, model settings, and evaluation 
strategies for each class to achieve more reliable performance 
in identifying all relevant fractures. 

C. Precision Recall Curve YOLOv11 Nano 
 

 

Fig 3.5 Precision Recall Curve 

The Precision-Recall (PR) Curve and its metrics show that 
the bone fracture detection model's performance differs 
significantly among various types of fractures [28]. The 
overall mean Average Precision (mAP) of 0.782 across all 
classes indicates a fairly good performance when using an 
IoU of 0.5 for correct detection. However, examining the 
Average Precision (AP) scores for individual classes reveals 

notable differences. 

For example, the 'Oblique fracture' achieved the highest AP 
at 0.995, indicating nearly perfect detection for this type. In 
contrast, the 'spiral fracture' only reached an AP of 0.516, 
showing the model struggles to identify this fracture pattern 
accurately at high precision across all recall levels. Several 
classes, such as 'Avulsion Fracture' (AP 0.864), 'Comminuted 
Fracture' (AP 0.802), and 'Hairline Fracture' (AP 0.812), 
performed well. Others, like 'Fracture Dislocation' (AP 
0.719) and 'Intra-articular fracture' (AP 0.653), fell below the 
average mAP. Interestingly, the 'Null' class, which represents 
non-fracture cases, achieved a high AP of 0.866, showing the 
model's skill in correctly identifying instances without 
fractures. 



The PR curve itself shows the trade-off: as recall (finding all 
positive samples) increases, precision (the percentage of 
positive identifications that were correct) generally 
decreases, and vice versa. The shape of the curve for each 
class provides insight into this relationship. A fairly gentle 
slope in the central part of the overall PR curve (the bold blue 
line) suggests there may be opportunities to improve the 
balance between precision and recall. 

The lower performance on certain complex fracture types, 
like spiral and intra-articular fractures, indicates the need for 
more varied training data or specialized techniques to better 
handle these challenging cases. From a clinical viewpoint, it 
is crucial to consider this variability in performance across 
different fracture types. Different fractures can have unique 
treatment implications and varying levels of diagnostic 
urgency [29]. 

D. Precision Confidence Curve 

 

 

Fig 3.6 Precision Confidence Curve 

The Precision-Confidence Curve for the bone fracture 
detection model provides valuable insights into its 
performance. It shows how precision changes when the 
confidence threshold for detection is adjusted. The curve 
reveals that the model can achieve perfect precision (1.00) 
across all fracture classes combined, but only at a very high 
confidence threshold (0.947, as indicated by "all classes 1.00 
at 0.947") [30]. However, this result should be viewed 
cautiously. A high threshold maximizes precision and 
minimizes false positives, but it usually results in a very low 
recall rate, meaning many actual fractures may be missed. 
This pattern was also seen in the earlier Recall-Confidence 
Curve analysis. 

Overall, the curve indicates a positive link between 
confidence level and precision. As the confidence threshold 
for classifying a detection as positive increases, so does the 
precision of those detections. This aligns with expectations 
since higher confidence detections tend to be more accurate. 
However, a concern is the wide range of precision values 
(from 0.0 to 1.0) at various confidence levels, especially for 
individual fracture classes, even though the combined curve 
is presented [31]. This suggests some instability in the 
model’s performance or high variability across classes. 

At intermediate confidence thresholds (about 0.4 to 0.6), the 
overall precision for all classes lies between roughly 0.75 and 
0.9. This indicates that when the model operates at lower 
confidence thresholds (like below 0.4) to increase recall, it 
may produce more false positives and lower precision. 

A limitation of this analysis, focused on the "all classes" 
curve, is the lack of a clear breakdown of precision values for 
individual classes at different confidence levels on this 
combined graph, though individual lines are shown. This 
information would be helpful for identifying specific fracture 
types that lead to drops in precision at certain confidence 
levels. Clinically, these results highlight the importance of 
balancing the trade-off between precision and recall when 
using the model. This often means selecting the best 
confidence threshold. The choice is particularly important 
due to the differing clinical impacts of false positives, which 
can cause over-diagnosis or unnecessary follow-ups, versus 
false negatives, which can result in missed diagnoses and 
delayed treatment in bone fracture assessment [32]. 

E. Labels 
 

 
 

Fig 3.7 Labels 

 
1. Distribution of Factor Values (Interpreted from visual 
data in the original document): 

A majority of the fracture types (Avulsion, GreenStick, 
Hairline, Impact, Intra-articular, Oblique, Spiral) appear to 
follow a somewhat uniform distribution pattern, with 
dominant "factor values" (as described in the original text, 
possibly referring to normalized coordinates or feature 
magnitudes) around 0.6 and 0.8. 

'Fracture Dislocation' and another category termed 
"Constrained Factor" (presumably a label from the plots) 
exhibit lower values, around 0.2 and 0.4, suggesting they 
possess characteristics distinct from the other categories [33]. 

2). Consistency 



Seven out of the nine listed fracture types show very similar 
distribution patterns (with values clustering around 0.8, 0.6, 
0.8, as per the original text's interpretation of its own figures). 

This uniformity could reflect a consistent annotation 
methodology or inherently similar visual characteristics 
among these specific fracture types [34]. 

3. Anomaly 

"Constrained Factor" and 'Fracture Dislocation' emerge as 
outliers, characterized by lower factor values (0.2-0.4). 
 
These differences might stem from unique visual features 
[35], varying degrees of difficulty in annotation, or a 
comparatively smaller number of samples available for these 
particular categories. 

4. Implication 

The relatively uniform distribution pattern observed for most 
classes should generally facilitate the model's learning 
process for these common types. 
 
Classes exhibiting different distributions (such as 
"Constrained," 'Dislocation') might necessitate specific 
interventions [36]. These could include augmenting the 
training dataset with more samples of these types, applying 
specialized data augmentation techniques, or potentially 
employing a model architecture more adept at handling such 
variations. 

 

F. Confusion Matrix 

 

Fig 3.8 Confusion Matrix Normalized 

An examination of the normalized confusion matrix 
shows mixed performance by the bone fracture detection 
model. It achieves high accuracy for some fracture classes but 
faces significant challenges with others. The values along the 
main diagonal show the rate of correct predictions (true 
positive rates for each class). Notably, 'Oblique fracture' 
stands out with a perfect score (1.00), meaning all instances 
of this fracture type in the test set were correctly identified 
[37]. It is followed closely by 'Avulsion Fracture' (0.88) and 
'Comminuted Fracture' (0.81), indicating strong recognition 

for these categories. 

However, the model struggled with some complex or less 
clear fracture types. For example, 'Impact Fracture' (0.01) and 
'Spiral Fracture' (0.02) were almost completely undetected, 
showing very low true positive rates. This points to a clear 
weakness in the model's ability to identify these specific 
fracture patterns. The subtlety, infrequency in the dataset, or 
visual similarity to other classes or normal bone structures 
may contribute to this issue. 

Further analysis reveals that the model has particular trouble 
with other subtle and complex fractures. For instance, 
'Hairline Fracture' achieved a true positive rate of 0.82, but it 
was also linked to a 0.38 false positive rate. This may refer to 
situations where other fractures were misclassified as 
Hairline, or Hairline fractures were misclassified as other 
types or normal variations [38]. Similarly, 'Intra-articular 
fracture' showed a true positive rate of 0.62. On a positive 
note, the 'Null' category, which represents non-fracture 
instances, achieved a true negative rate of 0.86, indicating 
good specificity. 

The confusion matrix also reveals problems with false 
positives for certain classes. The notable false positive rates 
for some categories, such as 0.32 for 'Compression-Crush 
Fracture' and the earlier mentioned 0.38 for 'Hairline 
Fracture,' suggest the model tends to misclassify other 
conditions or even normal anatomy as these fracture types, or 
the other way around. These error patterns, particularly for 
fractures with irregular shapes or unclear boundaries, 
generally showed poorer performance, supporting earlier 
observations from the precision-recall metrics. 

These findings highlight the need for several strategic 
improvements. First, increasing the training data, especially 
focusing on rare and complex fracture types, is essential. 
Second, using data augmentation techniques aimed at 
enhancing the visibility of subtle fractures could help 
improve their detection. Third, a possible redefinition of 
fracture classes might be considered, particularly for those 

that look similar and are often confused with each other. 

Finally, continuous clinical validation is crucial. This step 
ensures that the observed error patterns do not indicate 
systemic biases in the training dataset or misinterpretations of 
radiological signs. It also helps determine the model's actual 
usefulness and reliability in a real-world medical setting [39]. 

IV. CONCLUSION 

Generally, YOLO models work well for object detection tasks 
because they have a high inference speed and can detect 
multiple objects in a single image with good accuracy. In 
applications like identifying bone fracture types, YOLO 
excels at handling both object localization, which involves 
defining bounding boxes, and classification at the same time. 
From our YOLOv11 implementation, we achieved an 
mAP50-95 of 0.362. This result is quite good for a medical 
dataset, particularly given the high visual similarity that often 
exists between different fracture classes.  

We implemented YOLOv11 Nano to create an end-to-end 
system that could locate a fracture and classify its type. 
However, due to the challenges with fracture data, especially 
the subtlety of some fractures and the visual overlap between 



classes, it is likely that YOLOv11 would benefit from 
combining it with better data augmentation techniques or a 
more specialized classification model. This could help us 
achieve a higher level of diagnostic accuracy. Relying only 
on YOLO without these improvements or a separate 
classification stage increases the risk of misdetection, 
especially in cases involving small fractures or those with 
non-linear shapes, like spiral and oblique fractures. 
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